Lower arterial cerebral blood flow is associated with worse neuroinflammation and immunomodulation composite proteomic scores

Dejan Jakimovski¹, Ferhan Qureshi², Murali Ramanathan¹, Anisha Keshavan², Kelly Leyden², Kian Jalaleddini², Ati Ghoreyshi², Michael G Dwyer¹, Niels Bergsland¹, Karen Marr¹, Bianca Weinstock-Guttman¹, Robert Zivadinov¹

¹University at Buffalo, NY, USA; ²Octave Bioscience, CA, USA

Introduction

- Brain hypoperfusion has been linked with worse physical, cognitive and MRI outcomes in multiple sclerosis (MS).
- Understanding the proteomic signatures related to hypoperfusion could provide insights into the pathophysiological mechanism.

Aim

• To determine the relationship between cerebral arterial blood flow (CABF) and multivariate proteomic characteristics in people with MS (pwMS).

Methods

- 140 pwMS (86 clinically isolated syndrome (CIS)/relapsing-remitting (RRMS) and 54 progressive (PMS)) were included in the study
- CABF was determined using ultrasound Doppler measurement as the sum of the blood flow in the bilateral common carotid arteries and vertebral arteries.
- Proteomic analysis was performed using the Multiple Sclerosis
 Disease Activity (MSDA) with
 Proximity Extension Assay
 methodology on the OlinkTM
 platform.

Fable	1. Demog	graphic and	l clinical	characteristics	of the	study p	opulation
--------------	----------	-------------	------------	-----------------	--------	---------	-----------

Demographic and clinical characteristic of the study population	Total MS population (n=140)	CIS/RRMS (n=86)	PMS (n=54)	p-value CIS/RR vs. PMS	
Female, n (%)	103 (73.6)	61 (70.9)	42 (77.8)	0.371ª	
Age, mean (SD)	54.0 (10.9)	43.7 (10.3)	54.7 (8.2)	<0.001 ^b	
BMI, median (IQR)	27.4 (24.1-31.1)	26.6 (24.2 - 29.3)	28.1 (22.6 - 31.1)	0.613 ^b	
Obese, n (%)	36 (25.7)	19 (22.1)	17 (31.5)	0.216 ^a	
Hypertension, n (%)	26 (18.6)	12 (14.0)	14 (25.9)	0.076 ^a	
Hyperlipidemia, n (%)	31 (22.1)	19 (22.1)	12 (22.2)	0.986 ^a	
Heart disease, n (%)	23 (16.4)	17 (20.0)	6 (11.1)	0.169 ^a	
History of smoking, n (%)	60 (42.9)	36 (42.9)	24 (45.3)	0.78^{a}	
Presence of diabetes, n (%)	6 (4.3)	3 (3.5)	3 (5.6)	0.557ª	
CABF, mean (SD)	950.7 (256.5)	959.0 (249.9)	931.5 (278.7)	0.545 ^b	
Disease duration, mean (SD)	20.6 (18.5)	16.6 (8.9)	27.0 (9.9)	<0.001 ^b	
EDSS, median (IQR)	3.0 (1.6 - 6.0)	2.0 (1.5 - 3.0)	6.0 (4.0 - 6.5)	<0.001 ^c	
MSSS, median (IQR)	2.3 (1.2 – 5.4)	1.5 (0.9 – 2.9)	5.6 (2.7 – 6.5)	<0.001 ^c	
5-year relapse rate, mean (SD)	0.159 (0.361)	0.209 (0.4)	0.077 (0.24)	0.035 ^b	
Use of DMT, n (%)					
IFN-β	45 (32.1)	30 (34.9)	15 (27.8)		
Glatiramer acetate	35 (25.0)	20 (23.3)	15 (27.8)		
Natalizumab	8 (5.7)	6 (7.0)	2 (3.7)	0 779a	
Off-label DMT	6 (4.3)	3 (3.5)	3 (5.6)	$0.7/8^{a}$	
Oral DMTs	15 (10.7)	10 (11.6)	5 (9.3)		
No therapy	31 (22.1)	17 (19.8)	14 (25.9)		

a - chi square test, b - Student's t-test, c - Mann Whitney U test. P-values lower than 0.05 was considered statistically significant and shown in bold.

The MSDA score utilizes a stacked classifier logistic regression model of 18 age- and sex-adjusted protein concentrations and determines 4 disease pathway scores (immunomodulation, neuroinflammation, myelin biology, and neuroaxonal integrity) as well as an overall disease activity score (1 to 10).

Results

- There were no differences in CABF between CIS/RRMS vs. PMS groups.
- Lower CABF levels were correlated with the MSDA score (r=-0.26, p=0.003) and with neuroinflammation (r=-0.29, p=0.001), immunomodulation (r=-0.26, p=0.003) and neuroaxonal integrity (r=-0.23, p=0.007) pathway scores.

Table 2. Associations between proteomics-based score and totalcerebral arterial blood flow in people with multiple sclerosis

Proteomics-based sc pwMS	CABF	Age- adjusted CABF	Age and BMI- adjusted CABF	
MSDA sooro	r-value	-0.262	-0.275	-0.19
	p-value	0.003*	0.002*	0.033
Neuroinflammation	r-value	-0.287	-0.312	-0.241
score	p-value	0.001*	<0.001*	0.007*
Immunomodulation	r-value	-0.256	-0.282	-0.214
score	p-value	0.003*	0.001*	0.017*
Neuroaxonal	r-value	-0.234	-0.24	-0.165
integrity score	p-value	0.007*	0.006*	0.067
Myelin biology	r-value	-0.058	-0.046	0.023
score	p-value	0.51	0.605	0.799

L

I

L

L

Legend: Non-parametric Spearman's correlations and age-, BMI-adjusted correlations were performed. P-values lower than 0.05 was considered statistically significant and shown in bold. The multiple correlations were corrected for false discovery rate (FDR) using the Benjamini-Hocberg procedure. Significant correlations that survive the FDR correction are labeled with asterisks

- After age and body-mass index (BMI)-adjustment, lower CABF remained associated with neuroinflammatory (r=-0.23, p=0.011) and immunomodulation (r=-0.20, p=0.024) pathway scores
- Individual analyses outlined neurofilament light chain, CCL-20 and TNFSF13B as contributors.

Conclusions

• Lower cerebral arterial perfusion in MS is associated with changes in multiple pathophysiological pathways and proteomic biomarkers.

Funding:

This study was partially supported by a collaboration grant from Octave Bioscience.

